The nilpotence height of $Sq^{2^n}$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nilpotence Height of P

The method of Walker and Wood is used to completely determine the nilpotence height of the elements P s t in the Steenrod algebra at the prime 2. In particular, it is shown that (P s t ) 2bs/tc+2 = 0 for all s ≥ 0, t ≥ 1. In addition, several interesting relations in A are developed in order to carry out the proof.

متن کامل

Nilpotence in the Steenrod Algebra

While all of the relations in the Steenrod algebra, A, can be deduced in principle from the Adem relations, in practice, it is extremely difficult to determine whether a given polynomial of elements in A is zero for all but the most elementary cases. In his original paper [Mi] Milnor states “It would be interesting to discover a complete set of relations between the given generators of A”. In p...

متن کامل

Homotopical Nilpotence of S3

In [l] Berstein and Ganea define the nilpotence of an ü-space to be the least integer » such that the »-commutator is nullhomotopic. We prove that S3 with the usual multiplication is 4 nilpotent. Let X be an ii-space. The 2-commutator c2: XXX—>X is defined by c2(x, y) =xyx~1y~1 where the multiplication and inverses are given by the ü-space structure of X. The »-commutator cn: X"-+X is defined i...

متن کامل

Two-sided Essential Nilpotence

An ideal I of a ring A is essentially nilpotent if I contains a nilpotent ideal N of A such that J 91N # 0 whenever J is a nonzero ideal of A contained in I. We show that each ring A has a unique largest essentially nilpotent ideal EN(A). We study the properties of EN(A) and, in particular, we investigate how this ideal behaves with respect to related rings.

متن کامل

On the Nilpotence Order of β 1

For p > 2, β1 ∈ π 2p2−2p−2(S) is the first positive even-dimensional element in the stable homotopy groups of spheres. A classical theorem of Nishida [Nis73] states that all elements of positive dimension in the stable homotopy groups of spheres are nilpotent. In fact, Toda [Tod68] proved β 2−p+1 1 = 0. For p = 3 he showed that β 1 = 0 while β 5 1 6= 0. In [Rav86] the second author computed the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03203-0